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Abstract:  Malaria is one of the oldest diseases studied for a long time from all angles. Many infectious diseases including 

malaria are preventable, yet they remain endemic in many communities due to lack of proper, adequate and timely 

control policies. Strategies for controlling the spread of any infectious disease include a rapid reduction in both the 

infected populations (if a cure is available) as well as a rapid reduction in the susceptible class if a vaccine is 

available. For diseases like malaria where the development of a vaccine is underway, it therefore makes it 

seemingly possible to reduce the susceptible class through vaccination. In this paper, we have investigated and 

modify an SPITR mathematical model of Fekaduet al. for the transmission and control of malaria disease by 

incorporating parameters for vaccination and vector reduction and as well, determine the basic reproduction 

number of the model. We showed that the disease free equilibrium (DFE) state is locally asymptotically stable if 

1oR  and unstable if greater than unity. This shows that if 1oR , malaria can be controlled in the population. 

Keywords:  Basic reproduction number,Jacobian matrix, malaria, next generation matrix 

 

 

Introduction 

Malaria, formerly called ague fever, is one of the most 

common infectious diseases which pose a major health 

challenge for human beings worldwide (Marsh, 1998). 

Malaria is the common name and it is caused by single-celled 

parasites of the genus Plasmodium. Among these parasites, 

five species have been identified as potential causes of the 

disease in human. These are: Plasmodium vivax, Plasmodium 

malariae, Plasmodium falciparum, Plasmodium knowlesi and 

Plasmodium ovale. Of these, Plasmodium falciparum is of 

greatest risk to non-immune humans and these accounts for 

80% of cases and 90% of deaths (Kakkilaya, 2003). Children 

under the age of five and pregnant women are the most 

vulnerable to the severe forms of malaria. Pregnancy lowers 

the mothers’ immunity to malaria making them more 

susceptible to infection. At present, the disease affects more 

than 300 million humans and kills 1.5 to 3.0 million people 

every year (Ngwa and Shu, 2000; Chitnis, 2005; Chitnis, 

Cushings and Hyman, 2006). 

Malaria is transmitted by the bite of an infected female 

Anopheles mosquito whenever the infected mosquito feeds on 

blood meal. The symptoms of malaria disease include fever, 

chills together with headache, vomiting flu-like, anemia 

(destroying red blood cell), diarrhea, liver and neurological 

damage. Malaria is endemic in tropical areas where climate 

and weather conditions allow continuous breeding of the 

mosquito. 

In recent times, various control strategies and intervention 

programme have been adopted worldwide. Some of which 

include the introduction of anti-malaria vaccines which is 

underway, insecticides-treated bed nets (ITNs), internal 

residual spraying (IRS), control of breeding environment, and 

biological control among others. These are largely used in 

malaria endemic countries especially those in Sub-Saharan 

Africa and have somewhat led to the reduction in the spread 

of the disease. 

Mathematical models play a key role in the control of malaria. 

Their use in the study of malaria originates from the early 

work of Ross in 1911 where it was used to prove that bringing 

the mosquito population below a certain threshold was 

sufficient to eliminate malaria. This threshold naturally 

depends on some biological factors such as the biting rate and 

vectorial capacity. For the purpose of estimating infection and 

recovery rates, Macdonald (1957) used a model in which he 

assumed that the amount of infective material upon which a 

population is exposed remains unaltered. Some 

epidemiological models as in Aron and May (1982), and 

Anderson and May (1991) used the assumption that acquired 

immunity to malaria disease is boosted by additional or 

continuous exposure to re-infection. In this paper, we 

modified the SPITR model of Fekadu et al. (2015) by 

including a vaccination and vector reduction parameter in 

order to determine its impact as a control measure for the 

spread of malaria. 

 

Definition of terms 
Susceptible: The number of individuals who can be infected 

but have not yet contracted the malaria but may 

contract it when exposed to its mode of 

transmission 

Protected: The number of individuals from susceptible and 

recovered compartments who do not and will 

not contract malaria due to adequate and 

sufficient preventive measures against possible 

infection or re-infection. Such preventive 

measures include vaccination, the use of Indoor 

Residual Spraying (IRS) and Insecticide Treated 

Nets (ITNs) 

Infected: The number of individuals from susceptible 

compartment who have been infected of 

malaria. 

Treated: The number of individuals from the infected 

compartment undergoing clinical treatment after 

being infected of malaria. 

Recovered: The number of individuals from infected and 

treated compartment who have recovered 

naturally or clinically and back to normal status 

of health. 

Vaccination: The introduction of a vaccine or serum into a 

living organism to confer immunity 

WHO: World Health Organization 

oR : The expected number of secondary cases 

produced by a single (typical) infection in a 

completely susceptible population 
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Parameters and variables of the model 

Table 1: Parameters and meaning 
Parameters Meaning 

  Natural birth rate of humans 


 

Natural birth rate of mosquito
 

mh
 

Probability of transmission of malaria from 

infected mosquito to susceptible human
 

hm
 

Probability of transmission of malaria from 

infected human to susceptible mosquito
 

h

mmh

h
N

I
 

 

Transfer rate of humans from susceptible to 

infected compartment
 

h

hhm

m
N

I
 

 

Transfer rate of mosquito from susceptible to 

infected compartment

 

h

 

Natural death rate of humans

 

v
 

Natural death rate of mosquitoes
 

h
 

Death rate of humans due to malaria
 

r
 

Transfer rate of humans from infected to 

treated compartment
   

Transfer rate of humans from treated to 

recovered compartment 
  

Transfer rate of humans from infected to 

recovered compartment 
  

Transfer rate of humans from recovered to 

susceptible compartment 


 
Fraction of natural birth rate of humans. 

 

 1
 

Rate at which newly born humans enter into 

susceptible compartment
 

 
Rate at which newly born humans enter into 

protected compartment
 g

 
Transfer rate of humans from susceptible to 

protected compartment
 

 
Vaccination rate on humans

 

k  

Rate at which mosquitoes are killed 

  
Rate at which susceptible mosquitoes bite 

infected humans. (Infected mosquito also 

bites susceptible humans at the same rate) 
 

 

Table 2: Variables and description 

Variables Description
 

 tS h
 the number of susceptible human host at time t 

 tPh  

the number of protected human host at time t
 

 tI h  

the number of infected human host at time t
 

 tTh  

the number of treated human host at time t
 

 tRh  

the number of recovered human host at time t
 

 tSm  

the number of susceptible mosquito vector at time t
 

 tI m  

the number of infected mosquito vector at time t
 

 tN h  
the total human population at time t

 

 tNm  

the total mosquito population at time t
 

 

 

Model formulation 

The model by Fekaduet al. (2015) is given as         

  hhhhh

h

mmhh RgSSS
N

I

dt

dS



  1  (1) 

  hhhh

h PRgS
dt

dP
  1   (2) 

hhhhhh

h

mmhh IIrII
N

I

dt

dI



   (3) 

hhhh

h TTrI
dt

dT
     (4) 

  hhhhhh

h RRRIT
dt

dR
  1   (5) 

mmm

h

hhmm SS
N

I

dt

dS



    (6) 

mmm

h

hhmm IS
N

I

dt

dI



    (7)   

 

Proposed model 

We assumed that susceptible and infected mosquitoes are 

killed at same rate by humans and the inclusion of a 

vaccination parameter gives the modified model below;

  

  hhhhhh

h

mmhh SRgSSS
N

I

dt

dS



  1

 (8) 

  hhhhh

h SPRgS
dt

dP
  1   (9) 

hhhhhh

h

mmhh IIrII
N

I

dt

dI



   (10) 

hhhh

h TTrI
dt

dT
     (11) 

  hhhhhh

h RRRIT
dt

dR
  1   (12) 

mmmm

h

hhmm kSSS
N

I

dt

dS
 


   (13) 

mmmm

h

hhmm kIIS
N

I

dt

dI
 


  (14) 

 

 

Analysis of the Model 

The total population sizes hN  and mN  can be determined 

by hhhhhh NRTIPS  and
mmm NIS  . 

The initial conditions of the system of equations (8) - (14) are 

given by   00 hh SS  ,   00 hh PP  ,   00 hh II  , 

  00 hh TT  ,   00 hh RR  ,   00 mm SS  ,   .0 0mm II   

Considering the total human population, we have

.hhhh

h IN
dt

dN
   When the term hh I

vanishes in equation (8) - (14), we obtain the solution of

hh

h N
dt

dN
   to be      t

hh

h

h
heNtN




 
 0

 

showing that  
h

h tN



 as 0t . Similarly, on 

summing up the total mosquito population, we have
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 kN
dt

dN
mm

m    which yields the solution, 

      t

mm

m

m
mekNtN




 
 0

 showing that 

 
 k

tN
m

m






as 0t . 

 

 

Disease free equilibrium point 

The disease free equilibrium point, denoted by

  mmhhhhho ISRTIPSE ,,,,,, , are steady state 

solutions in the absence of the disease in human and the 

parasite in the mosquito population. By setting the right-hand 

side of equations (8) - (14) to zero and then evaluating, yields 

the equilibrium point, 

   
   

.0,,0,0,0,,
1





















kg

g

g
E

mhh

h

h

o










  

 

Basic reproduction number oR  

This is the threshold quantity for many epidemiological 

models. It determines when and whether a disease will die out 

in a population or become an epidemic. The threshold 

quantity indicates the number of secondary infections 

produced by a single primary infection in a completely 

susceptible population (Hethcote, 2000). When oR < 1, each 

infected individual averagely produces less than one new 

infected individual and as such, the disease dies out 

completely over time. On the other hand, if oR >1, each 

infected individual averagely produces more than one infected 

individual so that the disease spread and grow in the 

population, thus resulting in an epidemic. In the computation 

of oR , using the next generation matrix, it is relevant to 

distinguish new infections from all other changes in the 

population. We identify hI and mI  as the relevant classes for 

the computation of oR . An infectious event increases these 

classes (gain terms) and loses from these classes means loss 

of current or future infectious individual (loss terms). Listing 

the gain and loss terms (Table 3) for each class and creating a 

matrix  F  of gain terms and matrix  V  of loss terms 

with each evaluated at oE , we have 

 

Table 3: Grouping of gains and loss terms in the infectious 

compartment for human and mosquito population 
 Classes 

hI
 mI

 
Gains 

hmmh SI
 mhhm SI

 
Losses   hhh Ir      mm Ik  

 

 

 

 

 

 


































































































































0
1

0













gN

kN

N

SI

IN

SI

I

N

SI

IN

SI

I
F

hh

mh

mh

mh

Eh

mhhm

mh

hmmh

m

h

mhhm

hh

hmmh

h

o

 

Similarly; 

    

    

 





















































k

r

Ik
I

Ir
I

Ik
I

Ir
I

V
m

hh

E

mm

m

hhh

m

mm

h

hhh

h

o









0

0
 

Taking the inverse of V yields 

 

 






















k

r
V

m

hh




1

0

0
1

1
and evaluating 

1 FVG  gives 

 
 

     
























0
1

0
2

hhhh

mh

mh

hm

rgN

kN
G








.
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oR is the dormant eigenvalue, max of G , with D
TT











22

2

max   where T and D are the trace and 

determinant of matrix G . Since 0T , therefore  

 

      hhhm

hhmmh
o

rgk
DR











2

22

max

1

.

    (15) 

 

Stability of the disease free equilibrium point 

To establish the disease free equilibrium, the Jacobian matrix of equation (8) - (14) is computed and evaluated at oE , thus 

yielding; 

 

 

 
 













































































 













 




L
LN

L
LN

r

QN
M

g

QN
Q

J

h

hm

h

hm

h

h

h

mh

h

h

mh

Eo

00000

00000

00100

00000

1
00000

00100

1
0000
















,

 

Where:    gQ h ,  hhrM    and  .kL m    

To get the eigenvalues, we obtain the characteristic equation. 

Thus, 

 

 

 
 

























































 













 




L
LN

L
LN

r

QN
M

g

QN
Q

IJ

h

hm

h

hm

h

h

h

mh

h

h

mh

EO

00000

00000

00100

00000

1
00000

00100

1
0000

  

         

 

0

1

1 





















 












L
LN

QN
M

LQ

h

hm

h

mh

hhh  

         
 

  011

2

2

2

























LQN

MLLM

LQ

h

hmmhhhh 



  

so the eigenvalues of the characteristic equation are then given by 
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           

   
 

.
2

1
4

,,1,,,

2

2
2








 



LQN

MLLMLM

LQ
h

hmmh

hhh




 

And from equation (15), we have the eigenvalues in terms of oR  to be

 

           
     

2

.14
,,1,,,

2

o

hhh

RMLLMLM
LQ


   

Thus, we obtain; 

 

ML

LQN
R

h

hmmh

o








 



2
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 







 


LQNML
h

hmmh

2
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and by substituting the expressions for LNM h ,,  

and Q  yields oR =
 

      hhhm

hhmmh

rgk 






2
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 which conforms to the solution in equation (15) 

obtained based on the next generation matrix method.

 The eigenvalues are hereby analyzed below; 

01  h ,   02   gQ h ,   03  h ,   014  h , 

  05  kL m . 

     
2

14
2

6

oRMLLMLM 


 

     
2

14
2

7

oRMLLMLM 


 

If 01  oR , then 1oR  and 

   
0

22

2

6 






LMLM

 , and 

   
      krLM

LMLM
mhh 





 

22

2

7  

Therefore, 06   and 07   thus establishing 01  , 02  , 03  , 04  , 05  , 06  , 07   

 

 

Theorem 

Given the system of equations in (8) - (14) and that 

 ,,,,,,,,,,, kgr mh > 0, the disease-free 

equilibrium oE  is locally asymptotically stable if and only if, 

oR  ≤ 1, (Li et al.,1999). 

 

Discussion 

The Fekaduet al. (2015) SPITR mathematical model was 

modified by including parameters for vaccination, vector-

population reduction for the dynamics of malaria within 

human host and mosquito vectors. The model was analyzed in 

terms of actual population. The stability of the equilibrium 

point obtained by method of linearization were analyzed and 

found to be locally asymptotically stable. The effect of 

vaccination alone on the susceptible human class of the 

modified SPITR host modelreduces the number of susceptible 

human population against possible infection or re-infection, 

thus in the long run reduces the number of infectious human 

population. A combination of vector-population reduction, 

treatment, as well as vaccination of susceptible human, aimed 

at prevention, clearly indicates that malaria can be eliminated 

in the shortest possible time. 

 

Conclusion 
In consideration of the findings of this study as well as the 

incidental observations, to be able to eradicate malaria in the 

population, we recommend that a reasonable level of the 

combination of treatment, vaccination and vector-mosquito 

reduction should be maintained. 
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